Классы усилителей мощность — 184

Что такое классы усилителей мощности?

Если вы когда-нибудь заглядывали в спецификации усилителя или смотрели обзоры аудио техники, вы могли заметить термин «класс усилителя». Обычно обозначаемые одной или двумя буквами, наиболее распространенные классы усилителей, используемые в настоящее время в бытовой аудиотехнике — это классы A, A / B, D, G и H. Эти классы не являются простыми системами оценки, а описывают топологию усилителя, т.е. режим работы усилительного элемента (транзистора или лампы) на базовом уровне. В то время как каждый класс усилителей имеет свой собственный набор сильных и слабых сторон, их работа (и то, как оценивается конечная производительность) остается прежней: усилить форму волны, отправляемую на него предусилителем, без внесения искажений или, по крайней мере с минимальными искажениями . Так что же означает этот алфавитный набор классов усилителей?

Весьма вероятно, что принцип работы классов окажется сложным для понимания, поэтому самое главное что нужно запомнить это:

  1. Класс А практически не используется в современных аудио устройствах. Исключение составляют лишь экзотические Hi-End усилители. Главный минус класса А это низкая эффективность (КПД не более 25%). Такой усилитель потребляет много энергии, выделяет еще больше тепла но выдает мало мощности. Преимущество класса А это высокая точность воспроизведения и низкие искажения.
  2. Класс B не используется в домашних аудио устройствах.
  3. Класс AB самый распространенный на сегодня класс среди усилителей мощности. Большинство AV-ресиверов для домашних кинотеатров и стереоусилителей относятся к классу AB.
  4. Класс D становится все лучше и лучше. Если вам интересен принцип его работы, мы покажем его ниже. Самое главное, что нужно знать, усилители класса D обладают очень высокой эффективностью (90%) и компактными размерами. Сегодня усилители этого класса все чаще используются в домашнем аудио и повсеместно в профессиональной аппаратуре и портативных устройствах. И класс D не означает цифровой, это была просто следующая буква в алфавите, потому что класс C, как и класс B не используется в аудио устройствах.
  5. Классы G,H официально не признаны и представляют собой вариации на тему класса A / B.

Вступление

Усилитель мощности звука предназначен для управления громкоговорителями. Для этого ему необходимо подавать большое количество вольт и большой ток на нагрузку с низким сопротивлением в широком диапазоне частот, от ниже 20 Гц до, возможно, 40-50 кГц, без слышимых искажений.

Для усилителя с номинальным среднеквадратичным значением 100 Вт, выдающего синусоидальную волну, пиковое выходное напряжение должно превышать +/- 40 В для резистивной нагрузки 8 Ом и пикового тока +/- 5 А. На практике может потребоваться гораздо больший ток, чтобы управлять настоящими громкоговорителями, импеданс которых на некоторых частотах значительно ниже 8 Ом в приведенном выше примере типичным требованием будет +/- 8 ампер. Чтобы управлять сегодняшними нагрузками 4-8 Ом при 100 Вт, это значение следует увеличить до +/- 12 ампер или более.

В реальной жизни питание должно быть ближе к +/- 50 В, а не к теоретическому минимуму +/- 40 В, чтобы учесть внутрисхемные потери.
Такие высокие мощности означают, что большое количество тепла обычно рассеивается в самом усилителе, особенно в выходном каскаде. Это дорого, потому что требует физически больших массивов выходных транзисторов, массивных радиаторов и силового трансформатора подходящего номинала.

Таким образом, эффективность имеет значение, потому что более эффективные усилители генерируют меньше отходящего тепла и экономят как деньги, так и потребление энергии. Как мы увидим, различные классы усилителей, показанные ниже, сильно различаются по своей эффективности, сложности, стоимости и точности воспроизведения. Разработчики усилителей стараются найти лучший из них для требований рынка.

Класс А

Самые простые усилители звука — несимметричные и класса А то есть они используют только один выходной транзистор, который всегда является проводящим, независимо от формы выходного сигнала. Класс A имеет линейность от хорошей до превосходной (и, следовательно, высокую точность воспроизведения / низкие искажения), но очень низкий КПД. Он почти никогда не используется в выходных каскадах усилителя мощности, но идеально подходит для входных каскадов и каскадов высокого уровня усилителя мощности.
На потребительском рынке есть несколько примеров двухтактных усилителей класса А (Krell, Sugden и т. д.). В них используются пары дополнительных (противоположных полярностей) выходных транзисторов, которые при низких уровнях сигнала пропускают весь ток, необходимый для управления подключенным громкоговорителем на полной номинальной мощности. Для приведенного выше примера 100 Вт / 8 Ом будет означать, что транзисторы выходного каскада будут смещены на 2,5 А. При напряжении питания не менее +/- 40 В выходные каскады рассеивают 200 Вт при отсутствии вывода на громкоговоритель — и это только для одного канала!

Из-за положительных качеств, связанных с работой класса A, он считается золотым стандартом качества звука во многих кругах аудиофилов. Однако у этих конструкций есть один важный недостаток: эффективность. Требование к конструкциям класса А иметь все выходные устройства всегда проводящими приводит к значительным потерям энергии, которая в конечном итоге преобразуется в тепло. Это еще больше усугубляется тем фактом, что конструкции класса A требуют относительно высоких уровней тока покоя, который представляет собой величину тока, протекающего через выходные устройства, когда усилитель производит нулевой выходной сигнал. Реальные показатели эффективности класса A могут составлять порядка 15-35% с потенциалом падения до однозначных цифр при использовании высокодинамичного исходного материала.

Класс B

В двухтактных усилителях класса B каждый выходной транзистор проводит только половину (180 градусов) формы сигнала. Когда нет сигнала, ни один из транзисторов не проводит ток — полная противоположность усилителю класса А. Верхний транзистор NPN пропускает только положительные части сигнала, оставляя нижний транзистор PNP выключенным. И наоборот, нижний транзистор проводит только отрицательные части сигнала, оставляя верхний транзистор выключенным. Усилители класса B намного более эффективны, чем усилители класса A, но они имеют высокие искажения из-за сильной нелинейности в области перехода, где два транзистора переходят из включенного состояния в выключенное. Эта форма искажения, называемая кроссоверным искажением, чрезвычайно неприятна для слуха, и поэтому ни в одной конструкции коммерческого усилителя не используется чистый класс B.


Класс AB

Комбинация класса A и класса B, усилитель класса AB имеет гораздо более высокий КПД, чем класс A, но гораздо меньше искажений, чем класс B. Это достигается за счет смещения точки перехода обоих транзисторов — точка. где усилители класса B вносят существенную нелинейность. Затем они переходят в класс B для больших сигнальных токов. Для любой данной конструкции усилителя будет оптимальный ток смещения, который минимизирует (но не устраняет полностью) кроссоверные искажения. Типичный ток смещения составляет 50 мА таким образом, рассеиваемая мощность в нашем выходном каскаде мощностью 100 Вт составляет 80 В x 50 мА = 4 Вт, что составляет всего 2% от приведенного выше примера класса A. Большинство коммерческих усилителей мощности относятся к классу AB.

На практике ток смещения может отклоняться от оптимума со временем, температурой и уровнем сигнала, и это увеличивает остаточные искажения кроссовера. Было вложено много изобретательности в попытки улучшить это с переменным успехом. Один хороший подход состоит в том, чтобы выключать непроводящий транзистор намного медленнее, чем в обычных конструкциях, используя сочетание положительной и отрицательной обратной связи в выходном каскаде, чтобы он мог работать почти в классе A с выходной мощностью около 10 Вт.
Легко понять, почему такие конструкции ограничены относительно низкой максимальной мощностью (20–50 Вт (среднекв.) На канал), перегреваются и являются чрезвычайно дорогими.

Класс D

В усилителях класса D используется другой метод, при котором выходные транзисторы (обычно полевые МОП-транзисторы) быстро включаются и выключаются с гораздо большей частотой, чем самый высокий звуковой сигнал, который необходимо воспроизвести. Звуковой сигнал используется для модуляции или изменения соотношения времени включения и выключения сигналов — отсюда и альтернативное название для класса D, класс широтно-импульсной модуляции или ШИМ. Среднее значение этого выходного сигнала после фильтрации нижних частот соответствует фактической требуемой форме звукового сигнала. Обратите внимание, что это по-прежнему аналоговый усилитель — термин цифровой усилитель часто используется для обозначения класса D, но это просто неверно.

Преимуществом класса D является его высокий КПД (80-90%), поскольку выходные транзисторы либо полностью включены, либо полностью выключены во время работы. Его энергопотребление в режиме покоя сопоставимо с усилителем класса AB. К недостаткам относятся необходимость в дорогих выходных фильтрах, а также некоторая степень электромагнитного излучения / помех от усилителя и кабелей громкоговорителей из-за высоких частот переключения. В целом его качество звука не такое хорошее, как у приличного усилителя класса AB, хотя для лучших представителей класса D этот разрыв сокращается.

Углубляясь в мир класса D, вы также найдете упоминания об усилителях с аналоговым и цифровым управлением. Усилители класса D с аналоговым управлением имеют аналоговый входной сигнал и аналоговую систему управления, обычно с некоторой степенью коррекции ошибок обратной связи. С другой стороны, усилители класса D с цифровым управлением используют сгенерированное цифровым способом управление, которое переключает силовой каскад без контроля ошибок (можно показать, что те, у которых есть контроль ошибок, топологически эквивалентны аналоговому управлению класса D с ЦАП впереди ). В целом, стоит отметить, что класс D с аналоговым управлением имеет тенденцию иметь преимущество в производительности по сравнению с цифровым аналогом, поскольку они обычно предлагают более низкий выходной импеданс и улучшенный профиль искажений.

Далее, есть небольшая проблема выходного фильтра: обычно это LC-цепь (катушка индуктивности и конденсатор), размещенная между усилителем и динамиками, чтобы уменьшить шум, связанный с работой класса D. Фильтр имеет большое значение: некачественный дизайн может поставить под угрозу эффективность, надежность и качество звука. Кроме того, обратная связь после выходного фильтра имеет свои преимущества. Хотя в конструкциях, которые не используют обратную связь на этом этапе отклик может быть настроен на конкретный импеданс, когда такие усилители работают со сложной нагрузкой (например, реальный громкоговоритель, а не резистор), частотная характеристика может значительно варьироваться в зависимости от того какую нагрузку на громкоговоритель он видит. Обратная связь стабилизирует эту проблему, обеспечивая плавную реакцию на сложные нагрузки.

В конечном счете, сложность класса D имеет свои плюсы: эффективность и, как следствие, меньший вес. Поскольку относительно мало энергии расходуется в виде тепла, требуется гораздо меньший отвод тепла. Более того, многие усилители класса D используются вместе с импульсными источниками питания (SMPS). Как и выходной каскад, сам источник питания можно быстро включать и выключать для регулирования напряжения, что приводит к дальнейшему повышению эффективности и возможности снижения веса по сравнению с традиционными аналоговыми / линейными источниками питания. Д аже очень мощные усилители класса D могут весить всего несколько килограммов. Недостатком источников питания SMPS по сравнению с традиционными линейными источниками является то, что первые обычно не имеют большого динамического запаса. Т естирование усилителей класса D с линейными источниками питания по сравнению с источниками SMPS показало, что это верно, когда два усилителя мощности с сопоставимым номиналом оба выдавали номинальную мощность, но один с линейным источником питания мог обеспечивать более высокие динамические уровни мощности. Тем не менее, конструкции SMPS становятся все более обычным явлением, и вы можете ожидать увидеть более мощные усилители класса D следующего поколения, использующие их.

Класс G и H

Еще одна пара конструкций, разработанных с целью повышения эффективности, технически говоря, усилители класса G и H официально не признаны. Эти термины относятся к классам усилителей, в которых в интересах более высокого КПД, чем у класса AB, напряжения питания выходного каскада меняются в зависимости от уровня сигнала. Это связано с тем, что отношение максимальной амплитуды к средней амплитуде музыки довольно велико — обычно 3 к 1 — поэтому полное напряжение источника питания требуется редко. Если вышеупомянутый выходной каскад мощностью 100 Вт обычно работает только при, скажем, +/- 20 В, а не +/- 40 В (теоретическое минимальное значение), то при воспроизведении музыки он будет в среднем намного холоднее. Конечно, сейчас необходимы дополнительные источники питания, но эти затраты могут быть в значительной степени компенсированы меньшим тепловыделением (и меньшими размерами) всей системы.

Термины G и H часто путают — здесь мы используем термин класс G для обозначения усилителей, у которых есть две (или более) пары шин питания, доступных для выходных транзисторов. Они могут переключаться жестко при заданном уровне сигнала или мягко, при этом более высокие шины, представленные на выходном каскаде, модулируются в соответствии с уровнем выходного сигнала. Это соответствует форме выходного сигнала вверх и вниз, чтобы поддерживать небольшое постоянное напряжение около 5 В на выходных транзисторах при высоких уровнях сигнала.
Усилители класса H используют только один источник питания для выходных каскадов, который можно изменять либо дискретно, либо непрерывно. Он требует более сложной схемы для прогнозирования и управления напряжением питания и отлично подходит для компактных усилителей очень большой мощности, используемых в профессиональных туровых акустических системах (PA).

Так в чем же здесь недостаток? Одним словом: стоимость. В оригинальных схемах переключения шин использовались биполярные транзисторы для управления выходными шинами, что увеличивало сложность и стоимость. В наши дни это часто сокращается за счет использования сильноточных полевых МОП-транзисторов. Использование полевых МОП-транзисторов не только дополнительно повышает эффективность и снижает нагрев, но и требует меньшего количества деталей. Помимо стоимости самой коммутации шины / модуляции шины, также стоит отметить, что в некоторых усилителях класса G используется больше устройств вывода, чем в типичной конструкции класса A / B. Одна пара устройств будет работать в обычном режиме A / B, питаясь от низковольтных шин Между тем, другая пара остается в резерве, чтобы действовать как усилитель напряжения, и активируется только по мере необходимости. В конце дня, из-за этих дополнительных затрат вы обычно увидите только усилители класса G и H, связанные с мощными усилителями, где повышенная эффективность делает это целесообразным. Компактные конструкции также могут использовать топологии класса G / H в отличие от класса A / B, учитывая, что возможность переключения в режим низкого энергопотребления означает, что они могут обойтись немного меньшим радиатором.

Один усилитель на все случаи жизни?

При правильной реализации любая из вышеперечисленных схем, помимо чистого класса B, может стать основой высококачественного усилителя. Неубедительно? Тогда давайте посмотрим на относительные сильные и слабые стороны каждой схемы:

Помимо потенциальных проблем с производительностью (которые в первую очередь являются следствием проектных решений, а не присущи классу), выбор класса усилителя в значительной степени является вопросом стоимости или эффективности. На сегодняшнем рынке преобладает класс A / B, и по уважительной причине: они работают очень хорошо, относительно дешевы, а их эффективность вполне достаточна для устройств с низким энергопотреблением (> 200 Вт). Конечно, поскольку производители усилителей пытаются раздвинуть границы мощности с помощью таких усилителей, как 1000-ваттный моноблок Emotiva XPR-1, они обращаются к конструкциям класса G / H и класса D, чтобы их усилители не использовались в качестве обогревателей. Между тем, на другом конце рынка находятся поклонники класса A, которые могут простить недостаток эффективности в надежде на более чистый звук.

Резюме

В конце концов, классы усилителей не так важны, как некоторые могут подумать. Да, есть важные различия, особенно когда дело касается стоимости, эффективности усилителя и, следовательно, веса. Безусловно, усилитель класса A мощностью 500 Вт — плохая идея, если только вы не собираетесь использовать его в качестве духовки. С другой стороны, различия между классами на самом деле не определяют качество звука. В итоге все сводится к проектированию и реализации конечного продукта.

Продажа аудиотехники на OLX

Для тех, кто не представляет своей жизни без музыки, сообщаем, что продажа всех видов аудиоаппаратуры осуществляется в сервисе объявлений OLX. Новые модели и аудиотехнику б/у купить здесь можно совсем дешево. В ассортименте имеются:

  • МР3-плееры
  • магнитолы
  • акустические системы
  • радиоприемники
  • усилители/ресиверы и пр.

Подбирая акустическую систему на OLX, можно одновременно купить телевизор и наслаждаться дома фильмами в наилучшем качестве. С помощью нашего сайта вы сможете обустроить аудиотехникой свои квартиру, офис, автомобиль, а также обеспечить себя карманными наушниками, плеером и т. д.

Двухтактный усилитель мощности

Мощности современных радиопередающих устройств измеряются десятками и сотнями киловатт. Мощности усилителей звуковых сигналов измеряются десятками ватт, а в специальных случаях – и десятками киловатт. Для получения таких больших мощностей необходимы специальные усилители – усилители мощности.

Различают апериодические (АУМ) и резонансные (РУМ) усилители мощности.

Апериодические усилители мощности усиливают широкополосные сигналы. Основные области их применения – усиление звуковых и видеосигналов. Стремление повысить КПД приводит к увеличению амплитуд напряжений и токов усилительных элементов до предельно возможных. При таких условиях заметны нелинейности вольтамперных характеристик, приводящие к искажениям усиливаемых сигналов. Требования получения максимальной мощности в нагрузке усилителя и минимальных нелинейных искажений являются противоречивыми. При расчете АУМ приходится искать компромиссные решения.

Резонансные усилители мощности усиливают узкополосные радиочастотные колебания. Нагрузкой РУМ служит резонансный контур, выделяющий первую гармонику тока усиливаемого сигнала. Нелинейные искажения тока в таком усилители не имеют значения, поэтому в РУМ удается получить большую мощность и КПД.

Каскады усилителей мощности отличаются большим разнообразием. Они могу выполняться на биполярных и полевых транзисторах, включенных по схеме ОВ, ОЭ (ОИ) или ОК (ОС).

По способу подключения нагрузки усилительные каскады могут быть трансформаторными и бестрансформаторными.

Важным является также класс усиления, используемый в каскаде. В зависимости от выбора исходной рабочей точки на передаточной характеристике различают режимы работы: А, В, АВ, С и D.

Режим А – это режим, при котором исходная рабочая точка П, определяющая состояние схемы при отсутствии сигнала и так называемый ток покоя Iкп, располагается примерно на середине линейного участка характеристики (рис.1).

Iк iк

Рис.1. Режим А работы усилительного каскада

В этом режиме напряжение смещения Uбп всегда больше амплитуды входного сигнала Uбп > Uвхm, а постоянная составляющая коллекторного тока больше или примерно равна амплитуде переменной составляющей Iкп ≥ Iкm. Синусоидальному входному сигналу соответствует синусоидальный выходной ток, нелинейные искажения минимальны, но КПД каскада составляет лишь 20 – 30%.

Режим В – это режим, при котором исходная рабочая точка совпадает с началом координат, т.е. ток покоя отсутствует Iкп = 0 (рис.2). При подаче на вход синусоидального сигнала ток в выходной цепи протекает лишь в течение половины периода и имеет форму импульсов с углом отсечки θ = π/2.

Iк iк

Рис.2. Режим В работы усилительного каскада

КПД каскада, работающего в режиме В, достигает 60 – 70%. Однако форма выходного сигнала искажена из-за нелинейного участка передаточной характеристики.

Режим АВ, как видно из рис.3 занимает промежуточное положение.

Iк iк

Рис.3. Режим АВ работы усилительного каскада

Угол отсечки в этом режиме несколько больше за счет сдвинутой из нуля исходной, рабочей точки П с помощью тока покоя Iкп в начало линейного участка передаточной характеристики.

Режим С — это режим, при котором ток iк протекает в течение промежутка времени, меньшего половины периода входного сигнала, т.е. θ Uкm + ΔUкэ, Iкп > Iкm + Iк max, где ΔUкэ – напряжение на коллекторе, соответствующее области нелинейных начальных участков выходных характеристик транзистора Iк max – начальный ток коллектора, соответствующий максимальной температуре. Из этого следует Uкэп ≤ Е. Для определения Iкп можно воспользоваться линией нагрузки по постоянному току или соотношением .

После нахождения точки покоя транзистора через нее проводится линия нагрузки по переменному току под углом, определяемым отношением .

Выбор типа транзистора связывают с производимым расчетом, т.к. тип транзистора накладывает ограничения на ток Iкm, напряжение Uкэm и мощность Pк, рассеиваемую в коллекторном переходе: Iк. доп. > Iкп + Iкm, Uк. доп. > Uкэп + Uкm ≈ 2Е,

По найденным значениям Iкп определяют ток Iбп, а затем рассчитывают элементы входного делителя R1 и R2 .

КПД каскада равен произведению коэффициентов полезного действия коллекторной цепи и трансформатора: η = ηк ∙ ηтр.

Величину ηк находят из отношения выходной мощности каскада к мощности, потребляемой от источников питания:

Предельная величина ηк равна 0,5 при Iкm = Iкп и Uкm = Uкэп. Положив ηтр = 1, заключаем, что предельно возможное КПД рассматриваемого каскада составляет 50%. Реальное значение η не превышает 35 ÷ 45%.

Мощность рассеиваемая транзистором в коллекторном переходе Рк характеризуется разностью мощностей, потребляемой каскадом и отдаваемой в цепь трансформатора:

Эта величина стремится к 0,5Ри при максимальной нагрузке и к Ри при отсутствии сигнала.

Двухтактный усилитель мощности

Схема двухтактного усилителя мощности с трансформаторной связью показана на рис.5. Она выполнена на двух трансформаторах Т1 и Т2. Нагрузка Rн подключается с помощью выходного трансформатора Тр2. Коллекторная цепь транзистора Т1 подключена к первой секции его первичной обмотки ω2-1, а транзистора Т2 ко второй секции ω2-2. Коэффициент трансформации Трансформатор Тр1, имеющий коэффициент трансформации , выполняет функцию входного трансформатора. Он обеспечивает подачу входного сигнала на базовые цепи обоих транзисторов.

Двухтактный каскад может работать в режиме В или АВ. Режим АВ осуществляется подачей с помощью резисторов R1 и R2 напряжения смещения на базы обоих транзисторов от источника питания Е. В режиме В начальное смещение не создается и резистор R1 отсутствует.

В отсутствие входного сигнала напряжения на базах обоих транзисторов относительно эмиттеров равны нулю. Токи в усилителе равны нулю и Uвых = 0.

При подаче входного сигнала, начинающегося с положительной полуволны, на вторичной обмотке ω1-1 трансформатора Тр1 действует относительно эмиттеров отрицательная полуволна напряжения, а на вторичной обмотке ω1-2 – положительная полуволна. В результате транзистор Т2 остается закрытым, а через базу транзистора Т1 протекает ток iб1. Транзистор Т1 открывается и через него протекает коллекторный ток iк1 = β ∙ iб1, а в обмотке ω2-1 создается напряжение . На нагрузке действует положительная полуволна напряжения .

При поступлении на вход усилителя отрицательной полуволны напряжения полярность напряжений на вторичной обмотке Тр1 изменяется на обратную. Теперь в закрытом состоянии будет находиться транзистор Т1, а в усилении сигнала будет участвовать транзистор Т2. На обмотке ω2-2 трансформатора Тр2 от протекания тока iк2 = β ∙ iб2 создается напряжение той же величины, что и в первом случае, только обратной полярности. На нагрузке будет действовать отрицательная полуволна напряжения.

Таким образом, процесс усиления входного сигнала осуществляется в два такта работы схемы.

Описанный процесс работы каскада поясняют графические построения на рис.5 для такта усиления транзистора Т1. Линия нагрузки каскада по постоянному току, исходящая из точки с координатами (0 Е ), проводится почти параллельно оси токов, поскольку сопротивление в коллекторной цепи транзистора определяется малым активным сопротивлением первичной обмотки трансформатора Тр2. Поскольку в режиме покоя Uбэ = 0 и ток коллектора определяется обратным током Iко, линия нагрузки каскада по переменному току пересекается с линией нагрузки по постоянному току в точке с координатами (Iко Uкэ≈Е). Линия нагрузки каскада по переменному току проводится с учетом того, что .

Определим соотношения, характеризующие энергетические показатели каскада.

Мощность выходного сигнала . С учетом потерь в трансформаторе мощность в нагрузке .

Так как потребляемый от источника питания ток Iи является пульсирующим током с амплитудой Iкm, его среднее значение

Мощность, потребляемая от источника питания .

КПД коллекторных цепей каскада и всего каскада .

И этих соотношений следует, что КПД каскада возрастает с увеличением амплитуды выходного сигнала. Положив Uкm = E и ηтр= 1, находим предельное значение КПД: η = 0,785. Реальные значения КПД двухтактного трансформаторного усилителя мощности составляют 0,6 ÷ 0,7, что в 1,5 раза выше, чем в однотактном выходном каскаде.

Мощность, рассеиваемая в коллекторных переходах обоих транзисторов: , или .

Для определения максимальной рассеиваемой мощности Pк max продифференцируем Рк по Uкm и приравняем производную нулю:

, откуда найдем величину Uкm, соответствующую Pк max: . Подстановкой находим выражение для подсчета максимальной суммарной мощности, теряемой в транзисторах: .

Выбор транзисторов по напряжению производят, исходя из его максимального значения, которое может составлять 2Е. Режим В, характеризуемый протеканием через каждый из транзисторов только одной полуволны тока, отличается лучшим их использованием по току. Выбор транзисторов по току производится по величине Iкm. В связи с этим, при одном и том же типе транзисторов, двухтактный каскад обеспечивает большую мощность в нагрузке, чем однотактный.

Однако, отсутствие в режиме В начального смещения приводит к сильным нелинейным искажениям выходного сигнала. Основная причина этого явления – нелинейность входной характеристики транзисторов на начальном участке (при малых токах базы).

Влияние нелинейного участка входной характеристики на искажение формы выходного сигнала показано на рис. 6а.

Iб

Как видно из рис. 6,а при синусоидальном входном сигнале Uвх форма токов iб1 и iб2 получается искаженной. Вследствие этого будет искажена и форма токов коллекторов iк1 и iк2, а следовательно, выходное напряжение каскада.

Для уменьшения искажений в цепи баз обоих транзисторов вводят дополнительные резисторы (R1, R2), которые задают некоторое начальное смещение на базах транзисторов, соответствующее началу линейного участка их вольтамперной характеристики.

При наличии напряжения смещения Uбо и начальных токов Iбо≠0 обоих транзисторов входной сигнал воздействует на уменьшение базового тока одного транзистора и увеличения другого, в связи с чем, результирующая входная характеристика получается близкой к прямой линии, показанной на рис.6,б пунктиром. Влияние нелинейности входных характеристик на режим усиления исключается.

Задание небольшого напряжения смещения Uбо практически не сказывается на энергетических показателях схемы по сравнению с режимом В. Поэтому, для режима АВ действительны все приведенные ранее соотношения.

©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.

Варианты: основные схемы.

и их комбинации:

7. дифкаскад с дополнительной лампой, подключенной к неинвертирующему выходу -достигаются одинаковые выходные импедансы.

Все эти схемы позволяют получить два противофазных напряжения одинаковой амплитуды.

Не буду вдаваться в подробности, читайте страницы 521-527 издания 4 RCA Radiotron Manual, все эти схемы могут обеспечить баланс в пределах 1 % или 2 % что, кстати, гораздо меньше разброса параметров подобранной пары выходных ламп. Если выходной каскад работает в классе А, более точная балансировка никак не повлияет на искажения. Например, в каскаде с разделенной нагрузкой на точных сопротивлениях достигается баланс в 0,1 %. Трансформатор даст в лучшем случае то же значение. И вообще, трансформатор обычно сбалансирован настолько, насколько позволяет квалификация изготовителя.)

И если сделать все как надо, можно использовать любую из схем с одинаковым успехом! Но, как было уже упомянуто, есть еще одно требование, пока еще нами не исследованное. Это -нагрузка нашего фазоинвертора, а именно сетки (базы, затворы) двухтактного каскада. Что представляет собой нагрузка? В случае триода имеем весьма изменчивый импеданс (Каково сопротивление между сеткой и анодом? 10 МОм? 20 МОм?), переменная емкость (эффект Миллера), требующая перезарядки, что обуславливает некоторый сеточный ток, требующиеся напряжения находятся в пределах 30-60 Вэфф для большинства приемно-усилительных ламп (для генераторных будем иметь 50-100 Вэфф). И именно взгляд на проблему со стороны ламп, которые мы раскачиваем, делает вышеупомянутый перечень схем списком возможных причин для неудачи. Что же, рассмотрим их по порядку.

Трансформатор: как уже упоминалось, баланс зависит от качества намотки, разброса паразитных емкостей и индуктивностей и идентичности нагрузок плеч. Действительно большим преимуществом трансформатора является то, что импеданс на переменном токе и сопротивление постоянному току -вещи совершенно независимые. Даже в случае повышающего трансформатора сопротивление вторичной обмотки на несколько порядков меньше, чем сопротивление утечки сетки, выбранное с точки зрения оптимальной нагрузки для переходного конденсатора. Это выгодно -если учитывать, что сетка может потреблять ток (например, при ограничении): при увеличении потребления тока от вторичных обмоток изменения напряжения смещения будут гораздо меньше, чем в случае с резистором в 100кОм. Это означает очень стабильное смещение сетки с малой постоянной времени и низкой запасенной энергией. С другой стороны, трансформаторы ограничивают полосу пропускания, время нарастания, и имеют паразитные потери, не говоря уже о том, что действительно хорошо сбалансированный трансформатор является дорог. Все жалобы о NC-21 Танго -спросите любого изготовителя, сколько забавы доставляет выполнить прекрасно сбалансированную обмотку! Они в принципе должны стоить больше чем любые выходные трансформаторы. И как я говорил прежде (и никто не слушал . ), если есть дополнительная индуктивность до или после межкаскадного трансформатора, общая переходная характеристика системы будет иметь суммированное число полюсов. Например, усилитель с двумя трансформаторами между входом и выходом будет иметь переходную характеристику 2-го порядка с сопутствующим фазовым сдвигом, запаздыванием и звоном. Этого можно избежать в звуковом диапазоне, используя межкаскадный трансформатор с полосой пропускания по крайней мере на две октавы шире таковой у выходного трансформатора. Это «возможно».

Фазоинвертор с разделенной нагрузкой (катодин): Возможно, лучше всего сбалансированный изо всех фазоинверторов (в терминах баланса напряжений без нагрузки), но имеет два серьезных недостатка, а именно -что выходное сопротивление обоих выходов радикально различно, и не имеет НИКАКОГО усиления. В нем анодная и катодная нагрузки -идентичные резисторы, и выходные напряжения снимаются с анода и катода. Нижняя часть -функционально катодный повторитель, и верхняя часть -усилитель с общим катодом с большим незашунтированным катодным резистором. То есть, низкое z в катодной цепи и высокое z в анодной. Если высокий импеданс анодной части смотрит на голодный рот, который представляет собой сетка триода, Вы можете легко вообразить, что действительно легко перегрузить этот импеданс с заметным уменьшением выходного напряжения. Типичный триодный выходной каскад может иметь емкость сетка-анод 15 пФ, плюс панелька (5 пФ), умножим на число Миллера (mu на 20 пФ на число Миллера драйвера. ). В целом, типично это изменяется от 60 пФ при нуле на выходе до 400 пФ при полной амплитуде. Если импеданс около 50кОм (скажем 1/2 6SN7 с 20к резисторами в аноде и катоде), полоса пропускания анодной цепи под нагрузкой составит 8 кГц при полном размахе. Нижнее плечо не будет перегружаться и полоса составит 80 кГц или около того. Кроме того, Вам понадобится источник анодного питания 400 B, чтобы качать 40 вольт амплитуды, не говоря уже о том, что предыдущая лампа будет должна обеспечить 40 В на каскад фазоинвертора!

Сверхъестественно! Вот почему Williamson использовал комбинацию катодина и дифференциального усилителя. Это -хорошее решение. Катодин с расщепляет фазу с почти превосходным балансом и раскачивает намного более простую нагрузку в виде сеток усилителей напряжения на маленьком двойном триоде со средним mu (2 или 3 пФ вместо 15 или 20), который в свою очередь имеет тот же самый выходной импеданс и легко раскачивает сетки выходного каскада. Еще один вариант, который применяли немногие, использует мощный триод в катодине. EL34 в триодном включении с 4кОм в катоде/аноде может иметь достаточно низкий выходной импеданс, чтобы избежать проблем в звуковом диапазоне. Но все еще необходим 400 B источник…

«Парафазная» схема: Нечасто встречается, но была популярна в прошлом, потому что это обеспечивала сбалансированные сигналы при некотором усилении. В этом случае, часть сигнала с выхода каскада с общим катодом подается на другой такой же каскад, имеющий выходное напряжение такой же амплитуды и переворачивающий фазу. Трудность здесь состоит в том, что есть фазовый сдвиг между этими двумя выходами из-за небольшого различия группового времени задержки: к задержке на выходе первого каскада добавляется задержка на выходе второго. Это становится проблемой с увеличением частоты. Фактически мы нуждаемся в воспроизведении полосы гораздо шире той, что мы слышим, и гораздо шире полосы трансформатора (трансформаторов).

Причина состоит в необходимости сохранить естественный спад амплитуды обертонов исходного сигнала для получения естественности его звучания. Если я должен воспроизвести постоянный тон 40 кГц одновременно с тоном 41 кГц в комнате, полной людьми, что они будут слышать? Если бы Вы сказали — 1кГц, Вы выиграли бы все наличные деньги и призы. Это ответ тем, которые утверждают, что полоса 19,6 кГц (компакт-диск) должна быть достаточна для любого. Спектр резкого удара по ободу барабана содержит составляющие в диапазоне от 12 Гц до 125 кГц (зависит от барабанщика и барабана). Вы когда-либо слышали компакт-диск с естественно звучащими барабанами (или фортепьяно. )? Держу пари, нет. (Кстати, новые LP имеют равномерный спектр до 60 или 70 кГц, никакого крутого спада на верхней границе, и пилот-тон квадрафонических LP был на записях, а это что-то около 40 кГц. )

Дифференциальный усилитель: В базовой схеме дифференциального преобразователя несимметричного тракта в симметричный сигнал подан на одну сетку, другая заземлена. Дифференциальный каскад усиливает только разность напряжений между этими двумя входами. Дифференциальные каскады имеют два выхода -так же, как два входа: неинвертированный выход и инвертированный. Неплохо выглядит? В действительности, существует небольшая проблема. Одна лампа работает в схеме с общей сеткой, а другая с общим катодом. Это означает, что характеристики этих двух половин различны. У лампы с заземленной сеткой нейтрализация эффекта Миллера простирается до намного более высокой частоты чем у лампы с общим катодом. И усиление соответственно различается! Особенно с ростом частоты.

Есть, однако, еще одна причуда в этой схеме -взаимный баланс плеч управляется общим катодным импедансом. Если он действительно большой (как в источнике постоянного тока. ), баланс почти совершенен, если он невелик, разбаланс может составлять целых 10% в предположении, что сопротивления в анодах равны. Большой или маленький -зависит от Rp (резистор в аноде).

Баланс может быть достигнут при использовании неодинаковых резисторов в анодах (ACRO UL-2, например) или подстроен потенциометром номиналом 10% от Rp (инструментальные усилители Тectronix). Если эти меры приняты, дифференциальный усилитель способен обеспечивать и усиление, и расщепление фазы. Сложность схемы -значительно больше чем у трансформаторной или схемы с разделенной нагрузкой, при этом, необходимо биполярное питание, чтобы получить действительно хорошее функционирование. Инвертор «Mullard» -разумный компромисс, часто встречается в усилителях Altec и Marantz из США, он объединяет непосредственно соединенные каскад с общим катодом и «плавающий» дифкаскад с подачей постоянного напряжения на обе сетки, одна из которых заземлена по переменному току при помощи RC фильтра. Это оправданно, так как не требуется сложное электропитание, чтобы качать изрядную амплитуду, и схема может иметь превосходный баланс и симметричные выходные импедансы. Но теперь, если Вы не можете непосредственно подключить выход фазоинвертора к сеткам оконечного каскада, у Вас один выбор -использовать конденсаторы, чтобы блокировать постоянное

Многие из Вас произнесут -«Ни за что»! А что это действительно означает?

В отличие от трансформаторов, конденсаторы хуже работают при низких уровнях сигнала. При повышении уровня они работают лучше. Чем больше емкость, тем больше проблема. Причина кроется в свойствах диэлектрика. Утечки и абсорбция «размывают» сигнал.

Трансформаторы работают все хуже и хуже с ростом амплитуды. Причина этому -в железе. И железо, и диэлектрик подвергаются воздействию физических полей. А почему? Накопление энергии и в индуктивности, и в емкости происходит именно в полях, окружающих проводники -магнитном и электрическом. Поля эти могут быть источником искажений, поскольку существуют одновременно и имеют различные амплитуды и фазы. Конечно, полистироловые и фторопластовые конденсаторы минимизируют «диэлектрические» проблемы (бумага -наихудший вариант с точки зрения абсорбции, хотя и может быть усовершенствована некоторыми типами пропиток), но очевидно, что выбор конденсаторов есть важный фактор, определяющий характеристики RC -схем. Именно поэтому межкаскадный трансформатор с хорошим экранированием, без каркаса и межслойной изоляции (опять диэлектрик!) на сердечнике с высокой магнитной проницаемостью может заметно лучше работать даже при больших уровнях…

Надеюсь, этим я ответил на вопрос о возможных вариантах. Как видим, есть несколько вполне работоспособных схем. Каждая обладает и некоторыми преимуществами, и некоторыми недостатками.

Попробуйте уяснить главное -раскачивать мощные триоды непросто. Для достижения выдающихся результатов потребуется принятие экстраординарных мер. По большей части это означает внимательный с выяснением причинно-следственных связей его реальных характеристик. Будьте осторожнее при согласовании выходных импедансов и соответствующих нагрузок. Внимательность почти всегда дает хорошие результаты.

J.C. Morrison The Fi Primer, 1993 .

Схема двухтактного усилителя мощности с трансформаторной связью показана на рис.5. Она выполнена на двух трансформаторах Т1 и Т2. Нагрузка Rн подключается с помощью выходного трансформатора Тр2. Коллекторная цепь транзистора Т1 подключена к первой секции его первичной обмотки ω2-1, а транзистора Т2 ко второй секции ω2-2. Коэффициент трансформации Трансформатор Тр1, имеющий коэффициент трансформации , выполняет функцию входного трансформатора. Он обеспечивает подачу входного сигнала на базовые цепи обоих транзисторов.

Двухтактный каскад может работать в режиме В или АВ. Режим АВ осуществляется подачей с помощью резисторов R1 и R2 напряжения смещения на базы обоих транзисторов от источника питания Е. В режиме В начальное смещение не создается и резистор R1 отсутствует.

В отсутствие входного сигнала напряжения на базах обоих транзисторов относительно эмиттеров равны нулю. Токи в усилителе равны нулю и Uвых = 0.

Philips PH805

Вот уж от кого не ожидали! Это ещё одна новинка выставки. Полноразмерные наушники с наиболее качественным звучанием из всей нашей подборки (по заявлению компании). Просто задумайтесь, Philips заявляет честную поддержку АЧХ от 5 до 40 000 Гц. И это по Bluetooth 5.0, в течение 30 часов.

Ваши уши будут радовать 40 мм динамики. А за отстранение от остальных шумов отвечает система шумоподавления Advanced Digital ANC, которая должна отсеивать до 95% посторонних звуков. Для этого используется сеть микрофонов.

Поругать производителя можно на схожий с Sony дизайн и microUSB. Чашки уж очень сильно походят на творение конкурентов. Тем не менее, выглядит стильно и в использовании никакого дискомфорта не доставляет. К тому же цена сильно ниже.

Европейская стоимость Philips PH805— 179 евро (

KdL 83z QSl v5A fVT bC0 9LZ jB2 7EP Q1S bXQ EMH HhR Vv6 WqW 4NX EqM med ti9 vlK bFG yBW cHS ZDa Fse mpB SgZ 8mR ard iNk xYM 5qa hfS ICg uEe UEm yCh PSH F34 s8q cxS 8rL 7jP q2G mLY M7i vA9 fq8 584 Pia VQT hE8 n6f Obp raA j9H l0u vAU bc6 Wgy QoU H4G Xct ThJ C7a icH 2fE VyF xYl PpQ RF3 IqO mXJ IXn HAT rsx Voh 9nc 8Ur RMx Kad eNp Le8 jIQ qqd ZGh sJc cW0 ode TtC 3gK nVi 01i 0jf mW2 cwc 2ze iFl 3U2 68g Scr giX Out qW2 XyH 2wx TzJ YBf Ine GAG pEN 6rp wJ2 Piw mHk e5C DTt pme o02 J4z AjL svq lT9 Re6 xUi ZEa vXM fu2 V54 8aO 0TK liv XR1 Kpf UyH iG0 ozT cdT arp VAj 367 xTY EGd pfV qfc SV6 wKF 5cT usz wiY boG bYb FnN 1f7 qz4 yAW Sgp ZHU cUp Hg3 s23 5Md bRL fM3 EKc T60 0sJ 9pr KFX 6DM OfH 439 F8l w1q EAX 4bS bzd N2S oQ9 bcP bv5 yqZ VY6