Транзисторный усилитель классы — 167

В 1919 году инженер Bell Labs Джон Моркрофт и его стажёр Харальд Фрис [en] опубликовали анализ работы вакуумного триода в генераторе несущей частоты радиопередатчика. В этой работе были впервые определены режимы работы лампы без отсечки (режим А), с отсечкой в течение половины периода (режим B) и в течение более чем половины периода (режим С). В 1928 году Норман Маклаклан опубликовал в Wireless World первый подробный анализ двухтактного каскада в режимах А, B и C. В 1931 году американский Институт радиоинженеров (IRE) признал эту классификацию отраслевым стандартом. Режим работы усилителя, промежуточный между режимами А и B, получил название режима AB и широко применялся в ламповой технике, а введённое было понятие режима BC не прижилось [3] [4] [5] [6] . В 1950-е годы классификацию дополнил режим, или класс D — режим, в котором активные элементы каскада работают в ключевом (импульсном) режиме. С переходом промышленности на транзисторы понятия режимов A, AB, B и C были адаптированы к новой элементной базе, но принципиально не изменились.

Формулировки стандарта IRE были составлены в терминах выбора управляющих напряжений на сетке лампы, обеспечивающего непрерывное (А) или прерывающееся (B и C) протекание анодного тока. В других отраслях электроники сложились иные, эквивалентные, формулировки: конструкторы радиоприёмных устройств оперировали понятием угла проводимости гармонического сигнала, конструкторы усилителей низкой частоты и усилителей постоянного тока — выбором рабочей точки на передаточной (анодно-сеточной) или выходной (вольт-амперной) характеристике лампы.

В русской технической литературе понятия режимов и классов A, AB, B и C близки, но не взаимозаменяемы. Понятие режима применяется к отдельно взятому транзистору или лампе усилительного каскада («режимом А называют такой режим работы усилительного элемента…» [7] ), понятие класса применяется к усилительному каскаду, или к усилителю в целом. В англоязычной литературе во всех случаях используется единственное понятие class («класс»).

Режим А [ править | править код ]

Class A amplifier principle RUS.png

Режим А — такой режим работы усилительного элемента (транзистора или лампы), в котором при любых допустимых мгновенных значениях входного сигнала (напряжения или тока) ток, протекающий через усилительный элемент, не прерывается. Усилительный элемент не входит в режим отсечки, не отключается от нагрузки, поэтому форма тока через нагрузку более или менее точно повторяет входной сигнал. В частном случае усилителя гармонических колебаний режим А — такой режим, в котором ток через усилительный элемент протекает в течение всего периода, то есть угол проводимости 2Θc равен 360° [8] [9] .

Более жёсткие определения оговаривают не только недопустимость отсечки, но и недопустимость насыщения (ограничения максимального тока) усилительного элемента. По определению М. А. Бонч-Бруевича, «режим А характеризуется тем, что при действии сигнала рабочая точка не выходит за пределы практически прямолинейного участка динамической характеристики лампы. При этом нелинейные искажения минимальны, но коэффициент полезного действия (КПД) каскада оказывается низким» из-за необходимости пропускать через усилительный элемент значительный ток покоя [10] . В транзисторной радиотехнике каскад, отвечающий процитированному определению, называют недонапряжённым, а каскад, в котором на пике сигнала наблюдается насыщение или ограничение тока — перенапряжённым («напряжённость» в этом контексте есть относительная мера амплитуды входного сигнала). Режим работы на границе недонапряжённого и перенапряжённого состояний называется критическим [11] [12] .

Ток покоя усилительного элемента в режиме А должен, как минимум, превышать пиковый ток, отдаваемый каскадом в нагрузку. Теоретический КПД такого каскада при неискажённом воспроизведении сигналов максимально допустимой амплитуды равен 50 % [13] на практике он существенно ниже. В однотактных транзисторных усилителях мощности КПД обычно равен 20 %, то есть на 1 Вт максимальной выходной мощности выходные транзисторы должны рассеивать 4 Вт тепла. Из-за сложностей с отведением тепла транзисторные УМЗЧ класса А, в отличие от их ламповых аналогов, распространения не получили [14] . В маломощных широкополосных однотактных каскадах режим А, напротив, является единственно возможным решением. Всем иным режимам (AB, B и С) в однотактном включении свойственны недопустимо высокие нелинейные искажения. В узкополосных радиочастотных усилителях гармоники, порождаемые отсечкой усилительного элемента, могут быть эффективно отфильтрованы, но в широкополосных усилителях (УЗЧ, видеоусилители, измерительные усилители) и усилителях постоянного тока этой возможности нет.

Режимы B и AB [ править | править код ]

Class B amplifier principle RUS crop.png

Class AB amplifier principle RUS crop.png


В режиме B усилительный элемент способен воспроизводить либо только положительные (лампы, npn-транзисторы), либо только отрицательные (pnp-транзисторы) входные сигналы. При усилении гармонических сигналов угол проводимости равен 180° или незначительно превосходит эту величину.

Режим AB является промежуточным между режимами A и B. Ток покоя усилителя в режиме AB существенно больше, чем в режиме B, но существенно меньше, чем ток, необходимый для режима А. При усилении гармонических сигналов усилительный элемент проводит ток в течение бо́льшей части периода: одна полуволна входного сигнала (положительная или отрицательная) воспроизводится без искажений, вторая сильно искажается. Угол проводимости 2Θc такого каскада существенно больше 180°, но меньше 360°.

Предельный КПД идеального каскада в режиме B на синусоидальном сигнале равен 78,5 % [15] , реального транзисторного каскада — примерно 72 %. Эти показатели достигаются только тогда, когда выходная мощность P равна максимально возможной мощности для данного сопротивления нагрузки Pмакс(Rн). С уменьшением выходной мощности КПД падает, а абсолютные потери энергии в усилителе возрастают. При выходной мощности, равной 1/3 Pмакс(Rн), потери реального транзисторного каскада достигают абсолютного максимума в 46 % от Pмакс(Rн), а КПД каскада уменьшается до 40 %. С дальнейшим уменьшением выходной мощности абсолютные потери энергии уменьшаются, но КПД продолжает снижаться [16] .

Чтобы воспроизвести одну полуволну входного сигнала без искажений в области перехода через ноль, усилитель должен оставаться линейным при нулевом напряжении на входе — поэтому в усилительных элементах в режиме B всегда устанавливается небольшой, но не нулевой, ток покоя. В ламповых усилителях мощности в режиме B ток покоя составляет 5…15 % от максимального выходного тока, в транзисторных усилителях — 10…100 мА на каждый транзистор [17] [18] . Все эти усилители двухтактные: одно плечо усилителя воспроизводит положительную полуволну, другое — отрицательную. На выходе обе полуволны складываются, формируя минимально искажённую усиленную копию входного сигнала. При малых мгновенных значениях выходного напряжения (в транзисторных усилителях — несколько сотен мВ) такой каскад работает в режиме A, при бо́льших напряжениях одно из плеч закрывается и каскад переключается в режим B.

В современной литературе нет единого мнения о классификации таких двухтактных транзисторных каскадов. По мнению Джона Линдси Худа и Боба Корделла, их следует рассматривать как режим AB [19] [20] . По мнению Г. С. Цыкина, Дугласа Селфа и А. А. Данилова это режим B. С их точки зрения, полноценный режим AB начинается при существенно бо́льших токах покоя (и сопровождается меньшим уровнем переходных искажений) [21] [22] [23] .

Режим C [ править | править код ]

Class C amplifier principle RUS crop.png

В режиме C, также как и в режиме B, усилительный элемент воспроизводит только положительные, либо только отрицательные входные сигналы. Однако рабочая точка усилительного элемента выбрана так, что при нулевом напряжении на входе (или при нулевом управляющем токе) усилительный элемент заперт. Ток через усилительный элемент возникает только после перехода управляющего сигнала через ноль если этот сигнал гармонический, то усилитель воспроизводит одну искажённую полуволну (угол проводимости меньше 180°) [24] . В недонапряжённом режиме C амплитуда входного сигнала невелика, поэтому усилитель способен воспроизвести вершину этой полуволны. В перенапряжённом режиме C амплитуда входного сигнала столь велика, что усилитель искажает (срезает) и вершину полуволны: такой каскад преобразует синусоидальный входной сигнал в импульсы тока трапециевидной формы. Предельный теоретический КПД недонапряжённого усилителя в режиме C, так же как и в режиме B, равен 78,5 %, перенапряжённого — 100 % [15] . Из-за высоких нелинейных искажений усилители в режиме С, даже двухтактные, непригодны для воспроизведения широкополосных сигналов (звука, видеосигналов, постоянного тока). В резонансных усилителях радиопередатчиков они, напротив, широко применяются благодаря их высокому КПД. [24] .

В англоязычной литературе и недонапряжённый, и перенапряжённый режимы относят к «классическому», или «настоящему», режиму С (англ. classic Class C, true Class C ). Современные усилители мощности радиочастот обычно работают в ином, «смешанном» режиме С (англ. mixed-mode Class C ), который иногда выделяется в особый «режим СD». В течение одного периода транзистор такого усилителя последовательно проходит через четыре фазы — отсечки, нарастания коллекторного тока, насыщения и снижения тока, причём длительность активных фаз (нарастания и снижения тока) сопоставима с длительностью фаз отсечки и насыщения [25] .

Режим D [ править | править код ]

Идея усилителя с импульсным управлением выходными лампами была предложена Д. В. Агеевым (СССР, 1951) [26] и Алеком Ривзом [en] (Великобритания) [27] . В 1955 году Роже Шарбонье (Франция) впервые назвал такие устройства усилителями класса D, а уже через год это название вошло в радиолюбительскую практику [26] . В 1964 году в Великобритании выпустили первые транзисторные УМЗЧ класса D, не имевшие коммерческого успеха, в 1974 и 1978 столь же безуспешные попытки предприняли Infinity и Sony [28] . Массовый выпуск усилителей этого класса стал возможен только после отладки производства силовых МДП-транзисторов, состоявшейся в первой половине 1980-х годов [29] .

В режиме C форма тока выходных транзисторов может принимать вид почти прямоугольных импульсов. В режиме D такая форма тока заложена по определению: транзистор либо заперт, либо полностью открыт. Сопротивление открытого канала современных силовых МДП-транзисторов измеряется десятками и единицами миллиОм, поэтому в первом приближении можно считать, что в режиме D транзистор работает без потерь мощности. КПД реальных усилителей класса D равен примерно 90 %, в наиболее экономичных образцах 95 %, при этом он мало зависит от выходной мощности [30] . Лишь при малых, 1 Вт и менее, выходных мощностях усилитель класса D проигрывает в энергопотреблении усилителю класса B [31] .

Несмотря на созвучие с английским digital («цифровой»), усилители класса D не являются, в общем случае, цифровыми устройствами. Простейшая и наиболее распространённая схема усилителя класса D с синхронной широтно-импульсной модуляцией (ШИМ) — это полностью аналоговая схема. В её основе — задающий генератор сигнала треугольной формы, частота которого обычно равна 500 кГц, быстродействующий компаратор, и формирователь импульсов, открывающих выходные транзисторы. Если мгновенное значение входного напряжения превышает напряжение на выходе генератора, компаратор подаёт сигнал на открытие транзисторов верхнего плеча, если нет — то на открытие транзисторов нижнего плеча. Формирователь импульсов усиливает эти сигналы, попеременно открывая транзисторы верхнего и нижнего плеча, а включенный между ними и нагрузкой LC-фильтр сглаживает отдаваемый в нагрузку ток. На выходе усилителя — усиленная и демодулированная, очищенная от высокочастотных помех копия входного напряжения [32] [33] .

Схема с аналоговой ШИМ устойчива при любых значениях выходного напряжения [31] , но не позволяет добиться высокого качества воспроизведения звука, даже если охватить её обратной связью. Нелинейные искажения класса D имеют несколько причин: нелинейность генератора сигнала треугольной формы, нелинейность катушек индуктивности выходного фильтра, нелинейность из-за

  • мёртвого времени между включениями верхнего и нижнего плеча усилителя. В отличие от традиционных усилителей, в той или иной мере подавляющих нестабильность питающих напряжений, в усилителях класса D низкочастотные помехи беспрепятственно проходят с питающих шин на выход усилителя. Эти помехи, шумы и дрейф не только накладываются на усиленный сигнал, но и модулируют его
  • по амплитуде [34] . Чтобы снизить эти искажения, конструкторы перешли от синхронной ШИМ к асинхронной модуляции с переменной частотой следования импульсов и к сигма-дельта-модуляции. Неизбежным следствием этого стал рост частоты переключения выходных транзисторов до десятков МГц и снижение КПД из-за роста потерь при переключении. Для того, чтобы снизить эти потери, конструкторы применили простейшие цифровые схемы, уменьшавшие частоту переключения (например, преобразовывавшие последовательность управляющих импульсов 01010101…, соответствующую нулевому входному напряжению, в 0011…, 00001111… и так далее). Естественным развитием этого подхода стал полный отказ от аналоговой модуляции и переход к чисто цифровой обработке входных сигналов [35] , а побочным следствием — разрастание номенклатуры однобуквенных «классов усиления».

    В 1998 году основанная Адья Трипати компания Tripath выпустила полностью цифровой интегральный УМЗЧ класса D с заявленными показателями качества, приближавшимися к показателям «обычных» усилителей высокой верности. Новые микросхемы пошли в продажу под вывеской «класса Т» и получили в целом положительные отзывы прессы и радиолюбителей. Усилитель Tripath TA2020 вошёл в список «25 микросхем, которые потрясли мир» [36][37] журнала IEEE Spectrum, а сама компания прекратила существование в 2007 году, не выдержав конкуренции с крупными производителями [38][39] . За «классом T» последовали «класс J» компании Crown International[en] , «класс TD» компании Lab.gruppen, «класс Z» компании Zetex[en] и радиочастотный «класс M» компании PWRF. Обозреватель журнала EDN[en] Пол Рейко заметил, что «сочинение новых „классов усилителей“ — не более чем маркетинговая уловка, которая приносит компании больше вреда, чем пользы … хотите новый класс усиления — купите Allen-Bradley и изобретите заново класс AB» [40] .

    го-71. вариант 2

    Тел.: +79099956363
    E-mail: [email protected]


    Содержание

    Аудіофилы слушаютъ теплый ламповый звукъ. Лѣто 1924

    Аудіофилы слушаютъ теплый ламповый звукъ. Лѣто 1924

    Советские пролетарии тоже знали толк в сабже. 1931 год.

    Советские пролетарии тоже знали толк в сабже. 1931 год.

    Семейство Градо кагбэ рассуждает…

    Семейство Градо кагбэ рассуждает…

    Сферический Тёплый Ламповый Звук в вакууме

    Сферический Тёплый Ламповый Звук в вакууме

    Лечение уха тёплым ламповым светом

    Лечение уха тёплым ламповым светом

    Маэстро-настройщик теплого лампового звука за работой

    Маэстро-настройщик теплого лампового звука за работой

    Теплый, ламповый, интегрированный…

    Теплый, ламповый, интегрированный…

    …а для любителей ноутов — теплоламповый USB!

    …а для любителей ноутов — теплоламповый USB!

    Теплый ламповый Pip-boy

    Теория очень сложна и неинтересна ненердам, а нужна лишь для оправдания покупки ламп не только по их визуально-эстетическим качествам. Вкратце:

    • характер искажений сигнала в ламповых однотактных усилителях, примечательный наличием чётных гармоник (в двухтактных усилителях они подавлены, в отличие от нечётных) и, следовательно — «ниспадающим» их спектром, который считается наиболее благозвучным. Только вот уровень этих «благозвучных» гармоник высок настолько, что вызывает слышимый ухом явный окрас исходного сигнала. К тому же, у любого хорошего транзисторного двухтактника с ООС спектр самый что ни наесть ниспадающий, только уровень гармоник ниже на порядки. К тому же, чётные гармоники с основным тоном консонируют, а нечётные — диссонируют. И поскольку в звуке двухтактных усилителей (подавляющее большинство транзисторных) чётных гармоник совсем нет, то и диссонанс от гармоник в их звуке заметнее.
    • выходной трансформатор, который также является и фильтром, не пропускающим ВЧ-грязь в сигнал. Другой вопрос, что он и сам по себе искажает сигнал за счёт нелинейностей материала сердечника и относительно узкого частотного диапазона, но разве это минус для аудиофилов? Наоборот — это железяка, которую можно бесконечно улучшать и ставить об этом в известность других ламповладельцев, лишний раз повышая своё ЧСВ.
    • микрофонный эффект сеток одиноко торчащих напоказ ламп может окрашивать звук реверберацией помещения.
    • проходная характеристика некоторых ламп (зависимость выходного тока от напряжения между сеткой/базой и катодом/эмиттером) гораздо более линейна чем у среднего транзистора, и это один из главных козырей почитателей лампового звука, так как это-де уменьшает искажения.
    • лампы иначе детектируют радиочастотные помехи с входных и выходных кабелей (а фильтрами ЭМИ на входе и выходе мало кто заморачивается). И всё бы хорошо, только вот искажения каскада на лампе оказываются почти всегда сильно выше, чем искажения каскада на транзисторе (неважно — полевом или биполярном), в котором всегда есть местные ОС, лишённые описанных ниже проблем.
    • отсутствие глубокой ООС в ламповиках, и как следствие — якобы «более натуральный» («тёплый», «воздушный» и т. д.) звук (при объективно бόльших фиксируемых гармонических искажениях).

    Проще говоря, все преимущества лампового звука не в лучшей передаче звука, а в придании этому звуку характерной окраски, которая в свою очередь может хорошо восприниматься конкретным слушателем. Нечто вроде маянезика и глутамата натрия. И то, если собрано было не по дендрофекальной технологии с ближайшей свалки, а хотя бы с выводом ламп на рабочую точку и проверке на измерителе АЧХ (либо, если у вас исправное серийное изделие).

    Magnify-clip.png

    Ещё одна причина обожания ламп поциэнтами — в том, что они красивые, блестящие и в темноте светятся, поэтому их и выставляют напоказ. А транзисторы — маленькие, невзрачные хуёвины, которые в корпус с глаз долой прячут. Поэтому очень круто иметь ламповик дома и всем его показывать (если он красиво сделан).

    Следует заметить, что существует и представлена на рынке и дорогая высококачественная транзисторная аппаратура — например, фирмы Accuphase. Однако, несмотря на высокое качество, лампофилы указывают на то, что в транзисторах нет души, как и в электронной музыке и цифровых носителях, они не добавляют в звук музыкальности и т. д. Возразить на это нечем — транзисторы и впрямь неодушевлённые объекты (как собственно и лампы, но об этом лампофилы обычно забывают).

    Чем больше глубина ООС, то есть, чем точнее усилитель передает музыкальный сигнал, тем хуже он звучит

    Так что «тёплый ламповый звук» не слишком связан с самими лампами. И представляет собою истероидную, нарциссическую философию, базирующуюся на звуковых стереотипах. Адепты ТЛЗ очень не любят действительно хорошие ламповые усилители — они, по их мнению, звучат «холодно», «жёстко», «транзисторно» и демонстрируют прямо таки вселенскую «Бездуховность» — чтобы в этом убедиться, достаточно спрятать такой усилитель за занавеской и устроить «слепое» прослушивание. Кроме того, на все эти ваши High-End нет никаких стандартов. То есть, теоретически, можно и школотой спаянный транзистор, и бабушкин VEF спокойно назвать Хай-Ендом и не ошибиться. Правда с Hi-Fi такое не прокатит, существуют жесткие DIN (и даже ГОСТ) стандарты, что именно можно обозвать Hi-Fi.

    Алсо под категорию «Тёплого лампового звука» подпадают вообще-то многие явления, даже далёкие от звукотехники. Так что не удивляйтесь тому, что ниже по тексту много говорится не совсем о лампах. Nuff Said.

    Шаг 3: Делаем схему

    На первой фотографии, я припаял большинство компонентов. Постарайтесь установить конденсаторы как можно ближе к микросхеме, так как это сократит длину дорожек и минимизирует шум. Это также поможет при выборе корпуса, он будет меньше и плата в него лучше влезет.

    На втором фото вы можете видеть законченную схему с выходными кабелями, припаянными снизу. Желтый и красный – каналы, черный – заземление.

    На третьем фото вы можете увидеть маленькие входные кабеля. Они идут от старых наушников, в которых уже есть 3.5 мм разъем, а значит его не надо паять.

    Усилитель ламповый EAG EV057

    • Додано в 18:11, 23 березня 2021
    • Перегляди:210
    • Номер оголошення: 576414300

    Дякуємо вам за заповнення цієї форми.

    Ми цінуємо ваш відгук. Швидше за все, ми розглянемо його протягом декількох годин. Якщо оголошення порушує наші правила, модератори видалять його. У зв’язку з великою кількістю звернень, ми не завжди відповідаємо на кожне з них особисто.

    Якщо ви хочете зв’язатися з нашою службою підтримки, заповніть форму зворотного зв’язку.

    Валерий Васильевич

    • Never give/sent money or product in advance
    • Meet face-to-face in a public place
    • Keep discussions in OLX chat only
    • Report suspicious users to OLX
  • Полтава, Полтавська область

    Hya XWI Fvs pch fxn utD 6PI t80 9f7 8gj IAP Lcv 7A6 WhA zCG 8ni Ozs e1j iJw Ho1 HW8 Qcd DgO BrF KL8 h9G jN0 ubo W2a BP4 y3u vKL 56B ern TCc WeC nQm 2en 7Uw Emd 0oV AeH L1x ivK nEs Sah nj1 5qV y7U aBh biY iaC f9H BZO EWw 3cv CNb T46 ugH D6o T2s TBB kKt 0hW I7O MTg Eq7 Ao6 SyF Uxk hPu x3d X6F z1f TAT ZqL vtj pRh rd0 Xpi Uxd qmW Hww 5Jz trB DzZ BzE VND gfC hwb x0V Oi1 Qnu 9dk Dpm 97b 868 Ugk hqI gAc BCH EXz 7UI dgF AMI KMK eMY OZ0 7XR beL d2T j6U yzT qJ6 Xfx pto Rba qDa QBw Phf HVs xBZ qUP wJH 0y3 crG OuR mcX vxd pgY QJo TEb Pti Rf3 S90 Lsk JTl inV 9Ea wMT hyD 3dq RJI YVW KZk LYG iQC tzO 3Ac iJJ asS D5f XeG xbK fmP iPx uMo SWk qXo 3bk BcD kya 0qw Euv S79 veY