Series connected magnetic amplifier theory of plate
When current runs through a wire exposed to a magnetic field a potential is produced across the conductor that is transverse to the current. When a magnetic field is present that is not parallel to the motion of moving charges within a conductor, the charges experience the Lorentz force. In the absence of such a field, the charges follow a roughly straight path, occasionally colliding with impurities. In the presence of a magnetic field with a perpendicular component, the paths charges take becomes curved such that they accumulate on one face of the material. On the other face, there is an excess of opposite charge remaining. Thus, an electric potential is created so long as the charge flows.
We are searching data for your request:
Series connected magnetic amplifier theory of plate
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.
Content:
- CHAPTER 35
- Microwave Oven Transformer Diagram
- The Normal Channel
- A Brief Guide to Microphones - What a Microphone Does
- Difference between RC and RL Circuit
- Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials
- We apologize for the inconvenience...
- US2907947A - Magnetic amplifier apparatus - Google Patents
- Wheatstone bridge for strain gauges
CHAPTER 35
Louis, Mo. Self-saturating magnetic amplifiers are characterized by saturablecore reactor load windings which carry a direct current component to provide a desired threshold of premagnetization. Usually this type of amplifier is controlled by auxiliary control windings carrying either unidirectional current or properly phased alternating current. The present invention contemplates a self-saturating magnetic amplifier whose output may be controlled through a considerable range without auxiliary control windings, although such windings may be used in addition if desired.
Such an arrangement requires less core Window space for given power requirement and less copper, thus realizing important economies, both in cost and in space. In accordance with one embodiment of the invention, the output of a self-saturating magnetic amplifier may be controlled. A further feature of the invention is the supplying of saturating current and desaturating current from the supply source to the power winding during the inactive period of the saturating rectifier, and oppositely and simultaneously affecting the amplitudes of these respective currents with a single control.
It is therefore an object of the present invention to provide a' new, useful and more economically constructed self-saturating magnetic amplifier. Another object of the present invention is a self-saturating magnetic amplifier which may be controlled through a considerable range without auxiliary control windings. This does not preclude the use of auxiliary control windings if they are desired in addition to the control effected by use of the present invention alone.
Further objects and advantages of the present invention will be apparent from the following description, reference being had to the accompanying drawing wherein a preferred form of the present invention is clearly shown. For convenience, the diagram in Fig. The circuit shown in this figure includes: a load 18 between circuit points and 12; an alternating current power supply source 20; and a self-saturating magnetic amplifier 22, through which the load 18 is supplied with power from the power source The amplifier and load are connected to the power source through power input terminals 24, which are connected to circuit points 10 and Included in amplifier 22 are a pair of reactor branches 26 and 28 connected in parallel between circuit points 12 and 14, each branch being provided with a saturablecore reactor with a power winding in series with a unidirectional device, which device may be a metallic rectifier such as a selenium or germanium cell.
Thus, branch 26 has a saturable-core reactor 30 with a power winding 32 in series with a half-wave rectifier 34, while branch 28 has a saturable-core reactor 36 with a power winding 38 in series with a half-wave rectifier In the connection shown the rectifiers 34 and 40 not only operate on alternate half cycles of the supply voltage applied across the amplifier, but they are also oppositely poled in order to supply the load with alternating current.
Thus, with respect to the load and to the supply voltage the rectifiers 34 and 4d are reversely related to each other. The particular connections and relations thus far described form the conventional doubler self-saturating magnetic amplifier which is characterized by two parallel reactor branches which alternately operate on opposite half cycles of the applied alternating supply voltage to furnish current to the output circuit in opposite directions resulting in an alternating current output.
Current flowing through a reactor power winding in the conductive direction of its associated series rectifier is or not. Current through the power winding in the opposite direction is referred to herein as desaturating current and its direction as the desaturating direction.
The particular half cycles of the applied alternating current supply voltage during which a rectifier conducts are referred to as its active or conductive period or half cycle. It should be understood that a unidirectional device such as a rectifier may have leakage in the opposite direction to its conductive direction and still be referred to as being unidirectional.
That end of the load nearest a power input terminal is referred to herein as the supply-terminal end of the load. Also, that end of a reactor power winding nearest the load is referred to herein as the load end of the power winding. For example, in Fig. With the components described thus far the circuit of Fig. The quiescent level may be set by inherent design or by adding bias. Thus the quiescent value may assume any value within the capabilities of the reactors, including cut-off, the latter case providing the widest range of control influence by saturating current furnished by the hereinafter described circuit link.
In order to drive the output of the amplifier above the quiescent level, current from the supply source 20 is supplied to the power winding 38 in a saturating direction during the non-conducting or inactive half cycle of the rectifier 40 by means of a circuit link connecting the supply-terminal end of the load to a circuit point in branch 28 between the load end of the power winding 38 and the rectifier In the specific embodiment shown in Fig.
The circuit link itself is indicated at 42 and includes suflicient resistance or impedance to prevent the shunting r 3 of 'an excessively undesirable current portion around the reactorwinding 38 and the load The choice of the value of resistance in the link will be governed by the conditions which can be tolerated in the particular instance under consideration.
The greater the resistance the lesser willbe both'the shunting efiect and the amount of saturating current which will flow through the power winding 38 by way of the link during the inactive'period of rectifier 40;. The contrary will be true. A compromisehas to be chosen to fit the particular occasion. In the embodiment shown a fixed resistor 44 i lSures a certain minimum value of resistance in the circuit link '42,.
Additionally, an adjustable resistoris included in the circuit link 42 in the form of the portionA between one end 46 of potentiometer 48 and its contact arm 50, the latter being egnnected to circuit point 16 Portion A of the potentiorneter 48 is that portion of its resistance element which extends from the end 46 to the contact arm 50 at any given adjustment. Thus for any given position of potentiometer arm 50, the circuit link 42 willhave a finite resistance composed of the value of resistor 44 and that of potentiometer portionB, which finite resistance may be adjusted in value by moving the contact arm The term finite resistance as used herein means any value ofresistance between zero and infinity.
A switch 52 when closed-connects the portion B of the potentiometer to a circuit point between the power winding 32 and the rectifier 34 in branch With the switch 52 open as shown, the portion B is not in any circuit. In the embodiment shown the circuit link 42 is in series with the power'winding '38 in a current path connected directly across theload at circuit points and For descriptive convenience it will be assumed that the arrowhead portions of the rectifier symbols point in the conductive direction of the rectifiers and that the rectifiers are conductive when the arrowhead portion of the symbol is connected to the positive side of the supply voltage.
Thus, when circuit point 14 is positive rectifier 40 will be conductive and when circuit point 12 is positive rectifier 34 will be conductive.
With switch 52 open, the operative currents may be traced as follows. When the supply voltage is positive at circuit point 14, rectifier 34 blocks current flow while rectifier 40 passes current through the load 13 through power winding Depending on the resistance in circuit link 42, some current will also pass through this link Which shunts power winding 38 and the load On the next half cycle of the supply voltage the circuit point 10 is positive and rectifier 34 will allow current flow through the load 18 in the opposite direction, while rectifier 40 wi11 block current flow.
During this half cycle, current from the supply source 20 will also flow through circuit point 10, the circuit link 42, circuit point 16, through power winding 38, joining the load current at circuit point 12, and thence through. It will be noted that this current flow through power winding 38 by way of circuit link 42 is in the saturating direction, and the mmfs generated thereby in the reactor 36 will bein the aiding direction with respect to mrnfs generated in the reactor 36 by load current conduction through rectifier 40 when that rectifier is conducting.
The amount of saturating current which will be supplied to power winding 38 through circuit link 42 will depend on the resistance of the circuit link which may be varied by adjusting the potentiometer contact arm The load current output of the reactor 36 will be dependent upon the amount of saturating current which will flow therethrough.
I have found that although there is no direct control applied to reactor 30, branch 26, being in parallel with branch 28, will'with respect to its output above quiescent values follow that of branch 28 with a form of slave action. Thus, adjusting the load current output of reactor 36 will also control the output of reactor Within the range of values above the quiescent level, the output of reactor 30 will be reduced when the output of reactor 36 is reduced by controlling its saturation.
Likewise, if the output of reactor 36 is increased by controlling its saturation, the output of reactor 38 will follow and also increase.
The theory of this action is related to the fact that the portion of the supply voltage across the reactor branch 28 is the same as that across reactor branch 26, and also that a reactor can discharge or dissipate during one half cycle, only the volt-seconds absorbed by it in the previous half cycle.
In order to drive the output of the amplifier downward from the quiescent level, current in the desaturating direction is supplied from the power source 20 to the respective reactors 36 and 38 during the nonconductive or inactive periods of their respective series rectifiers.
This is accomplished in the embodiment shown by connecting resistance in the form of portion B of the potentiometer 48 between circuit point 16 and a circuit point between the power winding 32 and rectifier 34 by throwing the switch 52 and closing the circuit thereat.
With switch 52 closed, potentiometer portion B forms a shunt or bypass for the load current around each of the rectifiers 34 and 40 during their respective inactive periods, thus allowing current from the supply source 20 to pass through the reactor power winding associated with a particular rectifier in a desaturating direction during the inactive period of that rectifier.
More specifically, when the supply voltage is positive at circuit point 14 rectifier 34 is nonconductive and blocks load current fiow, while rectifier 40 is conductive and passes current to the load 18 through two parallel paths dividing at circuit point 16 and joining at circuit point The main path includes power winding 38, while the other path includes the. During this half cycle the inactive rectifier 34 is shunted or bypassed by the potentiometer portion B through the active rectifier The current passed through power winding 32 by rectifier 49 during this half cycle is in the desaturating direction.
Con versely, on the next half cycle when the supply voltage 1s positive at circuit point 10, rectifier 40 is inactive and blocks current flow, while rectifier 34 is active. Thus, during this half cycle, potentiometer portion B is shunted around the inactive rectifier 40, permitting-current flow through power winding 38 in the desaturating direction. By adjusting potentiometer contact arm 50 the resistances of portions A and B may be simultaneously O in Fig. In this figure parts corresponding with those in Fig.
The chief difference between the circuits of Figs. Specifically, branch 26 does not have a series rectifier. Despite the fact that only one of the parallel reactor branches has a series rectifier therein, the circuit functions as a self-saturating magnetic amplifier-and produces an A. For example, it supplies alternating current to its illustrated load, the input terminals 54 of a fullwave rectifier 56 whose output terminals are connected to a direct current load In the circuit of Fig.
Likewise, in this figure potentiometer portion B may be shunted across rectifier 40 by closing switch 52, thereby supplying current from the power source 20 in the desaturating direction through power winding 38 during the nonconductive period of rectifier Because of the slave-like tracking the output of branch 26 in Fig.
In particular examples of the circuits described herein the load 18 was constituted by a watt, volt lamp load; the supply source 20 was volts, 60 cycles; resistor 44 was ohms, watt capacity, and the resistance of potentiometer 48 was 10, ohms with a 2 watt capacity and a B taper flat at the end connected to switch Moving the potentiometer contact arm 50 from left to right dimmed the lamp load and moving it from right to left brightened the lamp load.
While the form of embodiment of the invention as herein disclosed constitutes a preferred form, it is to be understood that other forms might be adopted, all coming within the scope of the claims which follow.
Magnetic amplifier apparatus comprising first, second, third and fourth circuit points, a load connected between the first and second points, a pair of parallel branches connected between the second and third points, each branch including a saturable reactor power winding, the fourth point being in one of said branches and the power winding in that branch being connected between the second and fourth points, a unidirectional device connected between the fourth and third points and poled to block load current flow in the direction from the fourth to the third point, and a circuit link including finite resistance connecting the first and fourth points, said apparatus being operable in response to the application of alternating voltage across the first and third points.
Magnetic amplifier apparatus comprising first, second, third and fourth circuit points, a load connected between the first and second points, a pair of parallel branches connected between the second and third points, each branch including a saturable reactor power winding, the fourth point being in one of said branches and the power winding in that branch being connected between the second and fourth points, a unidirectional device connected between the fourth and third points and poled to block load current flow through said one branch in the direction from the second to the third points, the other branch being conductive at least in the direction from the second point to the third point, and a circuit link including finite resistance connecting the first and fourth points, said apparatus being operable in response to the application of alternating voltage across the first and third points.
Magnetic amplifier apparatus comprising an input circuit for receiving electric power, a load, a doubler selfsaturating magnetic amplifier, said lead being connected between said input circuit and said amplifier, said ampli fier having two parallel reactor branches, each including a saturable reactor power winding, at least one branch having a unidirectional device connected to the end of the power winding furthest removed from the load, the device in said one branch being poled to pass current through said one branch and the load in the direction from the device through the Winding of that branch toward the load, and a circuit link including finite resistance connected between the input side of the load and a point in said one branch between the load end of its power winding and the unidirectional device.
Magnetic amplifier apparatus comprising first and second input terminals for receiving alternating voltage, a pair of saturable reactor branches, one end of each being coupled to said second terminal, load means connected between said first terminal and the other ends of said branches, each of said branches having a saturable reactor power winding connected in series therein, at least one of said branches having a unidirectional device connected therein in series with the power winding in that branch, and means for supplying current to the power winding of said one branch in the saturating direction during the nonconducting period of the device in that branch in response to alternating voltages applied across said input terminals.
Magnetic amplifier apparatus comprising first and second input terminals for receiving alternating voltage, a pair of saturable reactor branches, one end of each being coupled to said second terminal, load means connected between said first terminal and the other ends of said branches, that end of the load means which is nearest to the first terminal being referred to as the terminal end of the load means, each of said branches having a saturable reactor power winding connected in series therein, at least one of said branches having therein a unidirectional device connected in series with the power winding of that branch, the unidirectional device in said one branch being between the power winding in that branch and the second terminal and poled to block current fiow from the first input terminal through the device to the second input terminal, that end of the latter power winding which is nearest.
Magnetic amplifier apparatus comprising first and second input terminals for receiving alternating voltage, a pair of saturable reactor branches, one end of each being coupled to said-second terminal, load means connected, between said first terminal and theother ends of saidibl'anches, each of said branches having a saturable reactor power winding connected.
Magnetic amplifier apparatus comprising first and second input terminals for receiving alternating voltage, V. Magnetic amplifier apparatus comprising first and second input terminals for receiving alternating voltage,.
Electric apparatus comprising a load, a selfsaturating magnetic amplifier, a source of alternating currentconnected to supply power to the-load through the amplifier, said amplifier having two alternately operable reactor branches, each including a saturable reactor power winding, at leastone branch havinga unidirectional device connected therein in series with the power winding of that branch, andmeansfor supplying saturating current from said source to the latter power winding during the inactive period of the device in said one branch, 'said means including a path conductively connected to the latter power winding and along which path said saturating current flows fromthe'power source I to the winding.
Electric apparatus -comprisinga load, a selfs-aturating magnetic amplifier, a source of alternating current connected to supply power to the load through the amplifier, said amplifier having two alternately operable reactor branches, each including a saturab le reactor power winding, at least one branch having a unidirectional.
USA en. Phase controlled alternating current power circuits using bidirectional conducting devices.

Microwave Oven Transformer Diagram
JavaScript seems to be disabled in your browser. You must have JavaScript enabled in your browser to utilize the functionality of this website. This product is classified as a dangerous good and is not available for online purchase. For ordering the dangerous good or other information please contact our customer service center. These are not available for online purchase. Email: webshopuk ld-didactic.
The Normal Channel
Forum Rules. This website or its third-party tools process personal data e. To learn more, please refer to the cookie policy. In case of sale of your personal information, you may opt out by sending us an email via our Contact Us page. To find out more about the categories of personal information collected and the purposes for which such information will be used, please refer to our privacy policy. You accept the use of cookies or other identifiers by closing or dismissing this notice, by scrolling this page, by clicking a link or button or by continuing to browse otherwise. Login to Your Account. Remember Me? Register Forgot password?
A Brief Guide to Microphones - What a Microphone Does

A proper understanding of antennas requires familiarity with electromagnetics, circuit theory, electronics and signal processing. Candace Suriano, Ph. How does an antenna pick up a signal and convert it to something useful to a receiving circuit? What is the current path for the signals received or transmitted from an antenna?
Difference between RC and RL Circuit
A typical multimeter may include features such as the ability to measure voltage , current and resistance. Analog instruments are usually based on a microammeter whose pointer moves over a scale calibration for all the different measurements that can be made; digital instruments usually display digits, but may display a bar of a length proportional to the quantity measured. A multimeter can be a hand-held device useful for basic fault finding and field service work or a bench instrument which can measure to a very high degree of accuracy. They can be used to troubleshoot electrical problems in a wide array of industrial and household devices such as electronic equipment , motor controls, domestic appliances , power supplies , and wiring systems. The resolution of a multimeter is often specified in " digits " of resolution. By convention, a half digit can display either a zero or a one, while a three-quarters digit can display a numeral higher than a one but not nine.
Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials
The major difference between RC and RL circuits is that the RC circuit stores energy in the form of the electric field while the RL circuit stores energy in the form of magnetic field. The RC circuit is formed by connecting a resistance in series with the capacitor and a battery source is provided to charge the capacitor. The RL Circuit is formed by connecting a resistance with an inductor and a battery source is provided to supply the current to the inductor. Another significant difference between RC and RL circuits is that RC circuit initially offers zero resistance to the current flowing through it and when the capacitor is fully charged, it offers infinite resistance to the current. While the RL Circuit initially opposes the current flowing through it but when the steady state is reached it offers zero resistance to the current across the coil. There exist some more crucial difference between RC and RL circuits; we will discuss all those with the help of comparison chart. Comparison Chart.
We apologize for the inconvenience...
Pulse Width Modulation or PWM is a popular and efficient method for driving DC motors because we can control the motors with significantly fewer power losses than continuous linear regulation. Using PWM enables control of the current in the windings and in turn the output torque, as the torque is proportional to average winding current. In a circuit, resistive loads will have a current that is proportional to PWM.
US2907947A - Magnetic amplifier apparatus - Google Patents
RELATED VIDEO: Homemade magnetic amplifiers made from common materials.E-mail: a. This chapter links the basic principles of magnetic resonance with the relevant hardware components in a magnetic resonance system. These components include the magnet, radiofrequency coil s , radiofrequency amplifier, shim coils, magnetic field gradient coils, gradient amplifiers, frequency locking circuitry, and receiver. The role of each component is explained in terms of its relationship to the associated magnetic resonance phenomenon, e.
Wheatstone bridge for strain gauges
JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser. Like phono cartridges, headphones and loudspeakers, the microphone is a transducer — in other words, an energy converter. It senses acoustic energy sound and translates it into equivalent electrical energy. Amplified and sent to a loudspeaker or headphone, the sound picked up by the microphone transducer should emerge from the speaker transducer with no significant changes.
To design and construct a Hartley oscillator and to measure its output frequency. Transistors, Bread board, resistors, capacitors, inductance coil, dc power supply, C. O, connection wires etc.
Completely I share your opinion. In it something is also idea excellent, I support.
This brilliant idea will come in handy.
Sorry, liquidated